1 DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
augustcorreia edited this page 2025-02-22 14:47:43 +08:00
This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.


Today, we are thrilled to reveal that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI concepts on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the designs too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language model (LLM) developed by DeepSeek AI that utilizes support discovering to boost reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key differentiating feature is its reinforcement knowing (RL) action, which was used to refine the model's responses beyond the standard pre-training and fine-tuning process. By including RL, DeepSeek-R1 can adjust more successfully to user feedback and goals, eventually boosting both significance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) method, indicating it's equipped to break down complicated inquiries and factor through them in a detailed manner. This directed reasoning procedure permits the design to more accurate, transparent, and detailed answers. This design integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured responses while focusing on interpretability and user interaction. With its extensive abilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation model that can be incorporated into numerous workflows such as representatives, rational reasoning and data analysis jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion criteria, making it possible for efficient inference by routing inquiries to the most pertinent specialist "clusters." This approach allows the model to concentrate on different problem domains while maintaining overall effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 design to more efficient architectures based upon popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a procedure of training smaller sized, more effective models to imitate the habits and thinking patterns of the larger DeepSeek-R1 model, utilizing it as an instructor design.

You can deploy DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we recommend deploying this design with guardrails in location. In this blog, we will utilize Amazon Bedrock Guardrails to introduce safeguards, avoid hazardous content, and evaluate models against key safety requirements. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to various use cases and apply them to the DeepSeek-R1 design, improving user experiences and standardizing safety controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 design, you need access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit boost, create a limit increase demand and reach out to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to use Amazon Bedrock Guardrails. For directions, see Set up authorizations to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to present safeguards, gratisafhalen.be prevent harmful material, and examine designs against crucial safety requirements. You can carry out security steps for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This permits you to use guardrails to assess user inputs and design reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The general flow includes the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the design for inference. After receiving the model's output, another guardrail check is used. If the output passes this last check, it's returned as the last result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections show inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace offers you access to over 100 popular, emerging, and specialized structure designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to invoke the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a service provider and pick the DeepSeek-R1 design.

The design detail page provides essential details about the model's abilities, prices structure, and application standards. You can find detailed usage guidelines, consisting of sample API calls and code bits for combination. The design supports various text generation jobs, consisting of content development, code generation, and question answering, using its reinforcement finding out optimization and CoT thinking capabilities. The page also includes implementation alternatives and licensing details to help you start with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be prompted to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, get in an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, enter a variety of circumstances (between 1-100). 6. For Instance type, choose your circumstances type. For optimal performance with DeepSeek-R1, a GPU-based instance type like ml.p5e.48 xlarge is suggested. Optionally, you can set up sophisticated security and infrastructure settings, including virtual private cloud (VPC) networking, service function permissions, and encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you might desire to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start using the model.

When the release is complete, you can evaluate DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive user interface where you can explore different prompts and adjust model parameters like temperature and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat design template for optimum results. For instance, material for reasoning.

This is an excellent method to explore the model's reasoning and text generation abilities before incorporating it into your applications. The play ground provides instant feedback, helping you understand trademarketclassifieds.com how the model reacts to different inputs and letting you tweak your triggers for ideal outcomes.

You can quickly test the model in the play ground through the UI. However, to invoke the released model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run inference utilizing guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to carry out inference utilizing a deployed DeepSeek-R1 model through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have produced the guardrail, use the following code to implement guardrails. The script initializes the bedrock_runtime client, configures reasoning criteria, and disgaeawiki.info sends a demand to generate text based upon a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, integrated algorithms, and prebuilt ML options that you can release with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your use case, with your information, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides two practical methods: utilizing the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you select the approach that finest fits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to deploy DeepSeek-R1 utilizing SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, pick JumpStart in the navigation pane.

The model browser shows available designs, with details like the service provider name and design capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 design card. Each design card reveals crucial details, including:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if relevant), showing that this design can be signed up with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to conjure up the design

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The model name and company details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab consists of important details, such as:

    - Model description.
  • License details.
  • Technical requirements.
  • Usage guidelines

    Before you deploy the model, it's advised to review the design details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to continue with release.

    7. For Endpoint name, higgledy-piggledy.xyz utilize the immediately created name or develop a custom-made one.
  1. For Instance type ¸ select a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, forum.pinoo.com.tr go into the variety of circumstances (default: 1). Selecting suitable circumstances types and counts is crucial for cost and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time inference is selected by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in location.
  4. Choose Deploy to deploy the model.

    The deployment procedure can take numerous minutes to finish.

    When implementation is total, your endpoint status will alter to InService. At this point, the model is all set to accept reasoning requests through the endpoint. You can keep track of the deployment progress on the SageMaker console Endpoints page, which will show appropriate metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the essential AWS approvals and environment setup. The following is a detailed code example that shows how to release and utilize DeepSeek-R1 for inference programmatically. The code for deploying the design is supplied in the Github here. You can clone the note pad and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run inference with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To avoid undesirable charges, complete the actions in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace deployment

    If you released the model using Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, choose Marketplace releases.
  5. In the Managed implementations section, find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and wiki.whenparked.com deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies build ingenious services using AWS services and accelerated compute. Currently, he is concentrated on establishing methods for fine-tuning and enhancing the inference efficiency of large language designs. In his totally free time, Vivek takes pleasure in treking, seeing films, and trying various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about developing solutions that assist customers accelerate their AI journey and unlock company worth.